Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fabrication and characterisations of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition

Identifieur interne : 000D19 ( Main/Repository ); précédent : 000D18; suivant : 000D20

Fabrication and characterisations of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition

Auteurs : RBID : Pascal:13-0103652

Descripteurs français

English descriptors

Abstract

n-CdS/p-PbS heterojunction solar cells were prepared via microwave-assisted chemical bath deposition method. A cadmium sulfide (CdS) window layer (340 nm thickness) was deposited on an indium tin oxide (ITO) glass. A lead sulfide (PbS) absorber layer (985- 1380 nm thickness) with different molar concentrations (0.02, 0.05, 0.075, and 0.1 M) was then grown on ITO/CdS to fabricate a p-n junction. The effects of changing molar concentration of the absorber layer on structural and optical properties of the corresponding PbS thin films and solar cells were investigated. The optical band gap of the films decreased as the molarity increased. The photovoltaic properties (J-V characteristics, short circuit current, open circuit voltage, fill factor, and efficiency) of the CdS/PbS heterostructure cells were examined under 30 mW/cm2 solar radiation. Interestingly, changing molar concentration improved the photovoltaic cells performances, the solar cell exhibited its highest efficiency (1.68%) at 0.1 M molar concentration.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0103652

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fabrication and characterisations of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition</title>
<author>
<name sortKey="Obaid, A S" uniqKey="Obaid A">A. S. Obaid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 USM, Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 USM, Penang</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics College of Sciences, University of Anbar, P.O. Box PO. (55 431)</s1>
<s2>Baghdad</s2>
<s3>IRQ</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iraq</country>
<wicri:noRegion>Baghdad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hassan, Z" uniqKey="Hassan Z">Z. Hassan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 USM, Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 USM, Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahdi, M A" uniqKey="Mahdi M">M. A. Mahdi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 USM, Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 USM, Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bououdina, M" uniqKey="Bououdina M">M. Bououdina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Nanotechnology Centre, University of Bahrain, PO Box 32038</s1>
<s3>BHR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Bahreïn</country>
<wicri:noRegion>Nanotechnology Centre, University of Bahrain, PO Box 32038</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, College of Science, University of Bahrain, PO Box 32038</s1>
<s3>BHR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Bahreïn</country>
<wicri:noRegion>Department of Physics, College of Science, University of Bahrain, PO Box 32038</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0103652</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0103652 INIST</idno>
<idno type="RBID">Pascal:13-0103652</idno>
<idno type="wicri:Area/Main/Corpus">001190</idno>
<idno type="wicri:Area/Main/Repository">000D19</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-092X</idno>
<title level="j" type="abbreviated">Sol. energy</title>
<title level="j" type="main">Solar energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Cadmium sulfide</term>
<term>Chemical bath deposition</term>
<term>Fill factor</term>
<term>Glass</term>
<term>Heterojunction</term>
<term>Heterostructures</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Layer thickness</term>
<term>Lead sulfide</term>
<term>Microwave</term>
<term>Nanocrystal</term>
<term>Open circuit voltage</term>
<term>Optical properties</term>
<term>Performance evaluation</term>
<term>Photovoltaic cell</term>
<term>Short circuit currents</term>
<term>Solar cell</term>
<term>Solar radiation</term>
<term>Thin film cell</term>
<term>Tin addition</term>
<term>Voltage current curve</term>
<term>Window layer</term>
<term>p n junction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hétérojonction</term>
<term>Cellule solaire</term>
<term>Hyperfréquence</term>
<term>Dépôt bain chimique</term>
<term>Epaisseur couche</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Matériau absorbant</term>
<term>Jonction p n</term>
<term>Propriété optique</term>
<term>Cellule couche mince</term>
<term>Caractéristique courant tension</term>
<term>Courant court circuit</term>
<term>Tension circuit ouvert</term>
<term>Facteur remplissage</term>
<term>Evaluation performance</term>
<term>Hétérostructure</term>
<term>Rayonnement solaire</term>
<term>Dispositif photovoltaïque</term>
<term>Sulfure de cadmium</term>
<term>Sulfure de plomb</term>
<term>Oxyde d'indium</term>
<term>Verre</term>
<term>Nanocristal</term>
<term>CdS</term>
<term>PbS</term>
<term>ITO</term>
<term>Couche fenêtre</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">n-CdS/p-PbS heterojunction solar cells were prepared via microwave-assisted chemical bath deposition method. A cadmium sulfide (CdS) window layer (340 nm thickness) was deposited on an indium tin oxide (ITO) glass. A lead sulfide (PbS) absorber layer (985- 1380 nm thickness) with different molar concentrations (0.02, 0.05, 0.075, and 0.1 M) was then grown on ITO/CdS to fabricate a p-n junction. The effects of changing molar concentration of the absorber layer on structural and optical properties of the corresponding PbS thin films and solar cells were investigated. The optical band gap of the films decreased as the molarity increased. The photovoltaic properties (J-V characteristics, short circuit current, open circuit voltage, fill factor, and efficiency) of the CdS/PbS heterostructure cells were examined under 30 mW/cm
<sup>2</sup>
solar radiation. Interestingly, changing molar concentration improved the photovoltaic cells performances, the solar cell exhibited its highest efficiency (1.68%) at 0.1 M molar concentration.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-092X</s0>
</fA01>
<fA02 i1="01">
<s0>SRENA4</s0>
</fA02>
<fA03 i2="1">
<s0>Sol. energy</s0>
</fA03>
<fA05>
<s2>89</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fabrication and characterisations of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OBAID (A. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HASSAN (Z.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAHDI (M. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOUOUDINA (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 USM, Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics College of Sciences, University of Anbar, P.O. Box PO. (55 431)</s1>
<s2>Baghdad</s2>
<s3>IRQ</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Nanotechnology Centre, University of Bahrain, PO Box 32038</s1>
<s3>BHR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, College of Science, University of Bahrain, PO Box 32038</s1>
<s3>BHR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>143-151</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8338A</s2>
<s5>354000506389810130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0103652</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>n-CdS/p-PbS heterojunction solar cells were prepared via microwave-assisted chemical bath deposition method. A cadmium sulfide (CdS) window layer (340 nm thickness) was deposited on an indium tin oxide (ITO) glass. A lead sulfide (PbS) absorber layer (985- 1380 nm thickness) with different molar concentrations (0.02, 0.05, 0.075, and 0.1 M) was then grown on ITO/CdS to fabricate a p-n junction. The effects of changing molar concentration of the absorber layer on structural and optical properties of the corresponding PbS thin films and solar cells were investigated. The optical band gap of the films decreased as the molarity increased. The photovoltaic properties (J-V characteristics, short circuit current, open circuit voltage, fill factor, and efficiency) of the CdS/PbS heterostructure cells were examined under 30 mW/cm
<sup>2</sup>
solar radiation. Interestingly, changing molar concentration improved the photovoltaic cells performances, the solar cell exhibited its highest efficiency (1.68%) at 0.1 M molar concentration.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hyperfréquence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Microwave</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hiperfrecuencia</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Jonction p n</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>p n junction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Unión p n</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Rayonnement solaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Solar radiation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Radiación solar</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sulfure de plomb</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Lead sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Plomo sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Verre</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Glass</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>PbS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Couche fenêtre</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Window layer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>077</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0103652
   |texte=   Fabrication and characterisations of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024